Imagem do mês de maio.

03/06/2016
Rede de coordenação com íons de európio.

Rede de coordenação com íons de európio.

Um crisântemo pompom decora a página do mês de maio do calendário do Instituto Nacional de Engenharia de Superfícies. A aparente flor é, na verdade, uma rede de coordenação (MOF) microscópica composta por íons de európio ligados a moléculas orgânicas, vista através de um microscópio eletrônico de varredura (MEV). Por ser luminescente, o material encontra aplicações como marcador e sensor, por exemplo. A imagem foi realizada no Centro de Tecnologias Estratégicas do Nordeste (CETENE), em Recife (PE) por Dyego Maia de Oliveira, e resulta do mix entre dois tipos de imagens geradas pelo MEV, a de elétrons secundários e a de elétrons retroespalhados.

Anúncios

Imagem do mês de abril. Entrevista com a autora.

25/04/2016
Nanopartículas core-shell seguindo as linhas de campo. Crédito: Helena Augusta Lisboa de Oliveira, estudante da UnB (DF).

Nanopartículas core-shell seguindo as linhas de campo.

Maio do ano passado no Laboratório de Fluídos Complexos da Universidade de Brasília. Partículas nanométricas feitas de óxidos metálicos, imersas num líquido contido num béquer, são atraídas por um ímã e se agrupam em linhas configurando um desenho de assombrosa semelhança com o íris de um olho. A então mestranda Helena Augusta Lisboa de Oliveira imortaliza a cena com a câmera de seu celular, com o objetivo de participar do concurso “Superfícies em Imagens”. Helena Augusta faz algumas alterações nas cores da foto e, no final do mês, ela candidata essa e mais duas imagens ao prêmio. A foto é escolhida como uma das imagens vencedoras e é publicada do calendário do Instituto Nacional de Engenharia de Superfícies na página do mês de abril.

A partir dessa experiência, Helena Augusta reuniu mais imagens científicas com valor estético e as publicou em sua página no Instagram, que hoje tem quase 500 seguidores. Em paralelo, a “fotógrafa científica” amadora finalizou o mestrado em Ciência de Materiais e iniciou, neste ano, o doutorado em Tecnologias Química e Biológica, também na Universidade de Brasília (UnB), no qual dará continuidade ao tema da pesquisa de mestrado: a fabricação e caracterização de nanopartículas magnéticas, e seu uso na remoção de metais pesados e poluentes orgânicos presentes em efluentes industriais e outros meios aquosos.

Segue uma entrevista com Helena Augusta.

Boletim Engenharia de Superfícies: – Conte sobre o contexto em que foi realizada a imagem: o trabalho de pesquisa e seus resultados.

Helena Augusta Lisboa de Oliveira: – O trabalho de mestrado teve como objetivo o desenvolvimento de uma nova nanotecnologia para remediação ambiental em que foram elaborados, caracterizados e aplicados nanoadsorventes magnéticos baseados em nanopartículas core-shell do tipo CoFe2O4@ γ-Fe2O3 para remoção do Cr(VI), conhecido como cromo hexavalente, de meios aquosos. A maior vantagem em se utilizar nanoadsorventes magnéticos, além da grande área superficial em pequena quantidade de amostra -por se tratar de partículas em escala nanométrica-, é a separação magneticamente assistida, método rápido e de alta eficiência. Os nanoadsorventes e o Cr(VI) podem ainda ser recuperados e reutilizados. Esperamos ainda neste ano gerar um paper e também um pedido de patente. No doutorado, pretendemos expandir a utilização dos nanoadsorventes para aplicações ambientais na remoção de poluentes orgânicos, além dos metais pesados. Os órgãos que fomentaram esse trabalho foram: FAP-DF, FINATEC, CAPES e CNPq.

Boletim Engenharia de Superfícies: – A imagem é uma foto de um experimento realizado para fins de pesquisa ou uma montagem com fins estéticos? Se for para pesquisa, qual era o objetivo do experimento?

Helena Augusta Lisboa de Oliveira: – A imagem foi obtida durante a realização de um dos experimentos do meu trabalho de dissertação. O objetivo do experimento na etapa retratada foi fazer a separação química dos nanoadsorventes magnéticos da solução de cromo hexavalente Cr(VI), com o auxílio de um ímã. Na imagem, o ímã foi afastado propositalmente do béquer para que as linhas de campo que orientam as partículas ficassem mais amplas, artisticamente para a foto.

Boletim Engenharia de Superfícies: – Explique em que consistiu o experimento de modo que possamos saber o que estamos vendo na imagem.

Helena Augusta Lisboa de Oliveira: – Os nanoadsorventes – em preto – foram colocados num béquer de 250 mL, onde já havia uma solução de Cr(VI) – em rosa (que originalmente é amarela*). Abaixo do béquer, foi colocado o ímã. Rapidamente, os nanoadsorventes magnéticos (que até então estavam dispersos na solução) se alinharam conforme as linhas de campo do ímã, tridimensionalmente (ainda imersos no meio líquido).

* A foto original pode ser vista na minha página do Instagram: @haloliveira. Destaco que a inspiração para fazer a coletânea e divulgação das imagens na página surgiu graças ao Concurso Superfícies em Imagens, que me motivou a explorar este lado da vivência científica.

Boletim Engenharia de Superfícies: – O que faz as partículas da imagem funcionarem como nanoadsorventes em águas?

Helena Augusta Lisboa de Oliveira: – Os nanoadsorventes magnéticos elaborados são baseados em nanopartículas core-shell (com um núcleo e camada externa feitos de diferentes materiais) do tipo CoFe2O4@γ-Fe2O3. A superfície de maguemita tem grande afinidade com o Cr(VI). Ao serem colocados em contato e agitação com solução contaminada com Cr(VI), o Cr(VI) tende a ser adsorvido na superfície de maguemita. O núcleo de ferrita de cobalto, por sua vez, garante uma rápida separação assistida magneticamente, devido às suas propriedades magnéticas.

Boletim Engenharia de Superfícies: – Partículas desse tipo já estão no mercado/ já são utilizadas em aplicações ambientais fora do laboratório?

Helena Augusta Lisboa de Oliveira: – A ideia é que os nanoadsorventes sejam aplicados em efluentes industriais contendo Cr(VI). Antes de a indústria liberar seu efluente contaminado com altas concentrações de Cr(VI) para o ambiente, ele deve ser tratado. Utilizando-se os nanoadsorventes, um grande volume de efluente contaminado seria reduzido a poucos litros de solução de Cr(VI) concentrada, que pode inclusive ser reutilizada pela indústria, como matéria prima com valor agregado.

Já existem sorventes de Cr(VI) baseados em nanopartículas no mercado, mas que só funcionam em determinadas condições restritas de uso.

Boletim Engenharia de Superfícies: – Gostaria de agradecer alguém que tenha participado da realização da imagem vencedora?

Helena Augusta Lisboa de Oliveira: – Agradeço ao meu orientador Alex Fabiano Cortez Campos que teve a ideia desse projeto. Ao Webert Medeiros, à Priscilla Coppola e ao Franciscarlos Gomes da Silva por fornecerem amostras para o trabalho.

Helena Augusta Lisboa de Oliveira e o professor Alex Fabiano C. Campos. Crédito: Aniger Lisboa.

Helena Augusta Lisboa de Oliveira e o professor Alex Fabiano C. Campos. Crédito: Aniger Lisboa.

Para entrar em contato com Helena Augusta: helena.augusta1@gmail.com.


Imagem do mês de março. Entrevista com a autora.

29/03/2016

por Verónica Savignano

MEV de nanofolhas de Cu(OH)2 crescido sobre lâmina de cobre.

MEV de nanofolhas de Cu(OH)2 crescido sobre lâmina de cobre.

Grama crescida sobre um montículo de terra é o que sugere a imagem que ilustra a página de março do calendário do Instituto Nacional de Engenharia de Superfícies. Todavia, a grama não é feita de grama, e sim de hidróxido de cobre (II), e suas folhas têm cerca de 37 nm de espessura e 2 ou 3 mm de comprimento. Por sua vez, a terra não é bem terra; trata-se de uma lâmina de cobre que foi forçada a se oxidar ao coloca-la em contato com uma solução aquosa contendo hidróxido de amônio e hidróxido de sódio. Depois de uma série de reações químicas consecutivas, formou-se o hidróxido de cobre (II) sobre a lâmina. Ou, em outras palavras, a grama cresceu sobre a terra.

Na imagem, a estrutura aparece aumentada 10 mil vezes por um microscópio eletrônico de varredura do Centro de Microscopia da Universidade Federal do Rio Grande do Sul (UFRGS) e colorida digitalmente usando um editor de imagens.

A formação da nanograma de hidróxido de cobre (II) fez parte de um trabalho realizado em 2014, cujo objetivo era o desenvolvimento de um novo sensor eletroquímico (ou seja, baseado em reações de oxidação e redução) para detectar glicose.

A autora do trabalho, e da imagem, é Natália Goedtel Medeiros, aluna do mestrado em Química da UFRGS, onde também realizou o bacharelado em Química.

Segue uma breve entrevista com a autora.

Boletim Engenharia de Superfícies: –  Explique, pensando em um público amplo, de não especialistas, como se formou o hidróxido de cobre II que aparece na imagem do calendário.

Natália Goedtel Medeiros: – Uma lâmina de cobre foi deixada em contato com uma solução contendo hidróxido de amônia (NH4OH) e hidróxido de sódio (NaOH). Nesse meio ocorre a oxidação do metal cobre, Cu0  →  Cu+2 + 2e-. Os íons Cu+2 reagem com o NH3 formando um aminocomplexo, Cu +2 + 4NH3  →[Cu(NH3 )4 ] +2, o qual posteriormente forma o hidróxido de cobre (II) pela reação com o grupo hidroxila (-OH), [Cu(NH3 ) 4 ] +2 + 2  OH →Cu(OH) 2 + NH4 OH.

Boletim Engenharia de Superfícies: – Ainda pensando em um público de não especialistas, explique de que maneira essa nanoestrutura pode ser utilizada na detecção de glicose. E comente mais sobre essa aplicação: vocês têm algum dispositivo em mente (por exemplo, um medidor de glicose em sangue) para a nanoestrutura?

Natália Goedtel Medeiros: – As nanoestruturas de hidróxido de cobre (II) podem ser utilizadas como um sensor eletroquímico na detecção de glicose devido ao seu efeito eletrocatalítico, que permite que a glicose seja oxidada na superfície do eletrodo gerando uma quantidade de corrente que é proporcional à sua concentração. Desta forma, pode-se utilizar este eletrodo na confecção de um dispositivo similar ao glicosímetro. Todavia, as nanofolhas de hidróxido de cobre (II) não mostraram ser tão eficientes na oxidação da glicose quanto as nanoflores de óxido de cobre (II). Mas a sua formação permitiu elucidar o mecanismo de crescimento de nanoflores de óxido de cobre (II) que foi objeto de estudo como sensor de glicose. Os resultados deste último foram publicados recentemente no Journal of Solid State Electrochemistry.

Foto do grupo de pesquisa. Da esquerda para a direita, Vanessa (IC), professora Jacqueline Arguello (orientadora), Natália (mestranda) e Filomeno (doutorando).

Foto do grupo de pesquisa. Da esquerda para a direita, Vanessa (IC), professora Jacqueline Arguello (orientadora), Natália (mestranda) e Filomeno (doutorando).

Boletim Engenharia de Superfícies: – Conte sobre o contexto em que foi realizada a imagem.

Natália Goedtel Medeiros: – Esta imagem foi realizada durante o desenvolvimento do meu trabalho de conclusão do curso de Bacharelado em Química na UFRGS, o qual foi orientado pela Prof.ª Dra. Jacqueline Arguello da Silva e cujo título é “Síntese de nanoflores de óxido de cobre para sensor eletroquímico de glicose”. Neste trabalho, o objetivo era desenvolver um novo sensor eletroquímico não-enzimático para detecção de glicose através da formação de nanoestruturas sobre uma lâmina de cobre. A imagem gerada auxiliou na elucidação do mecanismo de crescimento das nanoestruturas do óxido de cobre (II), composto que é formado posteriormente ao hidróxido de cobre (II). As nanoflores de óxido de cobre (II) foram utilizadas como sensor eletroquímico não enzimático para detecção de glicose. Estes resultados geraram um artigo publicado, cuja referência pode ser conferida abaixo. As fontes de financiamento são as agências de fomento CNPQ (Processo: 550441/2012-3), INCTBio (CNPq/INCT 573672/2008-3), CAPES e Propesq/UFRGS através de bolsas e projetos de pesquisa.

Referência: N. G. Medeiros, V. C. Ribas, V. Lavayen ,J. Arguello Da Silva. Synthesis of flower-like CuO hierarchical nanostructures as an electrochemical platform for glucose sensing. Journal of Solid State Electrochemistry, DOI 10.1007/s10008-016-3163-1

Boletim Engenharia de Superfícies: – Gostaria de agradecer alguém que tenha participado da realização da imagem vencedora?

Natália Goedtel Medeiros: –  Gostaria de agradecer à minha orientadora Prof.ª Dra. Jacqueline Arguello da Silva, aos meus colegas do grupo de pesquisa do Laboratório de Nanomateriais para Aplicações Analíticas ou Biomédicas da UFRGS, ao Instituto de Química da UFRGS e ao Centro de Microscopia e Microanálise da UFRGS.

Para entrar em contato com Natália: nataliagoedtel@gmail.com.


Imagem do mês de fevereiro. Entrevista com o autor.

23/02/2016

por Verónica Savignano

Nanobastões de ouro crescidos sobre nanotubo de carbono.

Nanobastões de ouro crescidos sobre nanotubo de carbono.

Carbono e ouro compõem a nanoestrutura que ilustra a página do mês de fevereiro do calendário do Instituto Nacional de Engenharia de Superfícies. Carbono, no nanotubo (de poucos nanômetros de diâmetro), formado por uma série de folhas de grafeno enroladas, de um átomo de espessura cada uma. Ouro, nos nanobastões que parecem enfeitar o nanotubo.

O autor principal da imagem é Anderson Caires de Jesus, doutorando na Universidade Federal de Minas Gerais (UFMG), e microscopista do Centro de Microscopia dessa universidade, onde foi realizada a imagem usando um microscópio eletrônico de transmissão,

Em seu mestrado, Anderson, orientado pelo professor Luiz Orlando Ladeira, desenvolveu um método de síntese de nanoestruturas híbridas como a da imagem. Além disso, explorou uma de suas possíveis aplicações: usá-las como amplificadores de sinal na identificação de moléculas por meio da técnica de espectroscopia Raman. Partindo dessa possibilidade, Anderson e colaboradores deram mais um passo e desenvolveram nanossensores que detectam compostos químicos e estruturas biológicas, podendo ser usados para diagnóstico médico ou veterinário e para análises químicas. O trabalho já gerou 4 pedidos de patente, além de artigos publicados em periódicos indexados internacionais, e um projeto de empresa spin-off, em busca de investimentos.

Em entrevista a nosso boletim, Anderson Caires explica brevemente como fabricou as nanoestruturas de carbono e ouro e conta mais sobre as aplicações desenvolvidas.

Boletim Engenharia de Superfícies: – Como foi fabricado o “tubinho enfeitado” da imagem do calendário? Por que nanobastões e nanotubo grudam?

Anderson Caires: – Esta imagem mostra nanobastões de ouro crescidos sobre a superfície de nanotubos de carbono. Neste projeto, desenvolvemos um novo processo de síntese de nanoestruturas hibridas, entre nanomateriais de carbono e nanoestruturas de ouro. O processo começa com a redução química de uma solução aquosa de um sal de ouro na presença de materiais de carbono, isso provoca o crescimento de pequenas nanopartículas de ouro em regiões ativamente funcionalizadas dos nanotubos de carbono de paredes múltiplas. Essa solução é então submetida a um processo fotoquímico com irradiação de luz ultravioleta. A ação da luz provoca diversas reações químicas que atuam para promover o crescimento in situ de nanobastões de ouro, utilizando as nanopartículas crescidas pela redução química como base. Podemos controlar a morfologia através da adição de surfactantes. Como o crescimento acontece in situ, os nanobastões ficam fortemente aderidos na superfície dos nanotubos de carbono.

A imagem foi realizada usando um microscópio eletrônico de transmissão (MET) Tecnai de 200 KV, instalado no Centro de Microscopia da Universidade Federal de Minas Gerais – UFMG.

Boletim Engenharia de Superfícies: – Conte-nos um pouco sobre o contexto em que foi realizada a imagem: o projeto no qual se insere, os resultados obtidos nesse projeto etc.

Anderson Caires: – Esta imagem é referente ao meu trabalho de mestrado intitulado “Desenvolvimento de nanomateriais e nanocompósitos para aplicação em detecção química e biológica por espalhamento de luz”. Neste trabalho, eu estou desenvolvendo nanocompósitos entre nanomateriais de carbono (nanotubos de carbono e óxido de grafeno) e nanopartículas de ouro anisotrópicas. Estamos aplicando estes materiais para detecção química e biológica através de espalhamento de luz, utilizando principalmente a técnica de espectroscopia Raman. Na espectroscopia Raman, uma impressão digital molecular pode ser identificada pelo espectro vibracional da molécula em estudo. Porém, o sinal Raman de diversas moléculas é muito fraco, sendo de difícil detecção em medidas convencionais. Assim, um efeito especial, chamado efeito SERS (surface-enhanced Raman spectroscopy), está sendo muito estudado nos últimos anos. Resumidamente, este efeito é uma amplificação do sinal Raman através da interação entre as moléculas em estudo e nanopartículas metálicas. Este material é ótimo para esse tipo de medida por que os nanotubos servem de template para os nanobastões, aumentando a interação entre eles, e ainda aumentando a superfície de absorção para as moléculas. Estamos desenvolvendo sistemas de detecção de compostos químicos para diversas aplicações baseadas neste processo. Durante este projeto publicamos dois artigos em revistas internacionais e temos um terceiro submetido; além disto, depositamos quatro pedidos de patente para o processo e produto. O artigo que trata em particular do trabalho que originou a imagem premiada, pode ser encontrado na referência abaixo. Nossa principal fonte de financiamento são as agências de fomento (CNPq, CAPES e FAPEMIG) através de bolsas e projetos de pesquisa.

Referência: A.J. Caires et al; Highly sensitive and simple SERS substrate based on photochemically generated carbon nanotubes/gold nanorods hybrids, Journal of Colloid and Interface Science, 455 (2015), 78–82. doi:10.1016/j.jcis.2015.04.071

Boletim Engenharia de Superfícies: – Comente quais são as aplicações dos nanobastões de ouro crescidos sobre nanotubos de carbono. São todas aplicações potenciais ou alguma já existe na sociedade fora do laboratório?

Anderson Caires: – Estamos aplicando este material como nanosensor para detecção de compostos químicos e estruturas biológicas, direcionados para o setor de análise química e diagnóstico médico/veterinário in vitro. Como o processo é simples e proporciona grande amplificação de sinal, foi possível desenvolver um sistema de detecção mais eficaz, sensível e barato que as tecnologias atualmente disponíveis no mercado. Isso é possível porque através da interação entre este material e as moléculas em estudo, podemos identificar uma assinatura molecular especifica de cada molécula, e em baixíssimas concentrações, da ordem de nanomolar ou até mesmo mais diluídas. Estamos buscando financiamento para criação de uma empresa focada nestes novos materiais e em sua produção comercial.

foto anderson

Anderson Caires

Boletim Engenharia de Superfícies: – Gostaria de agradecer alguém que tenha participado da realização da imagem vencedora?

Anderson Caires: – Gostaria de agradecer a toda a equipe do laboratório de nanomateriais do departamento de física da UFMG, e à equipe do Centro de Microscopia da UFMG.

Para entrar em contato com Anderson:

E-mail: andersoncaires@outlook.com. Linkedin: https://br.linkedin.com/in/andersoncaires


Imagem do mês de janeiro. Entrevista com o autor.

27/01/2016

por Verónica Savignano

Imagem MEV de MOF obtido via microondas.

Imagem MEV de MOF obtido via microondas.

Na página do primeiro mês de 2016, o calendário do Instituto Nacional de Engenharia de Superfícies exibe um conjunto de estruturas micrométricas arredondadas, cuja superfície apresenta um relevo acidentado, responsável por sua relativamente grande área superficial. Aguçando um pouco a vista, conseguimos distinguir que as estruturas são feitas de um material poroso.

O nome científico de cada uma destas bolinhas rugosas é MOF, de “metal-organic framework”. As MOFs da imagem são compostas por íons de elementos metálicos, no centro, ligados a moléculas orgânicas ao redor. A repetição dessas estruturas rígidas tridimensionais forma uma rede de átomos ordenada – por isso as MOFs são materiais cristalinos.

A imagem foi realizada usando um microscópio eletrônico de varredura (MEV) do Laboratório de Química de Materiais e Sensores (LMSEN) da Universidade Estadual de Maringá (UEM).

Segue uma entrevista com o autor da imagem, Bill Nishar Safadi, 20 anos, estudante do curso de graduação em Química da UEM, no Estado de Paraná.

Boletim Engenharia de Superfícies: – As estruturas MOF da imagem foram sintetizadas pensando em uma aplicação, não é mesmo? Conte-nos um pouco qual seria essa aplicação e qual seria sua importância social/econômica/ecológica.

Bill Safadi: – Esta classe de materiais é munida de elevada área específica, volume de poro elevado e estrutura flexível, o que torna o material altamente poroso. Estas importantes características proporcionam um grande potencial de aplicação para estes materiais. No que tange sua aplicação pode-se citar: armazenamento de gás, separação, sensoriamento químico, transporte de fármacos, aplicações em catálise heterogênea, entre muitas outras. Diante do potencial apresentado pelo material, pensou-se no emprego do material na adsorção de dióxido de carbono (CO2). Salienta-se que, na literatura, é visível o crescente número de tecnologias desenvolvidas para esta finalidade, pois existe uma preocupação global na diminuição das emissões de CO2. De acordo com a necessidade de diminuir a quantidade de CO2, a proposta foi desenvolver um material oriundo de fontes alternativas e aplicar esse material com apelo ambiental, visando minimizar a quantidade desse e outros gases presentes na atmosfera. Salienta-se ainda que o grande diferencial das MOFs é que estes materiais precisam de pouca energia para recuperar o CO2 capturado e aplica-lo em seu reuso. É digno de nota que o projeto para a síntese e aplicação destes materiais ostenta importância sócio/econômica e ambiental além de formação de recursos humanos altamente qualificados na área.

Boletim Engenharia de Superfícies: – Agora conte-nos um pouco sobre o contexto em que foi realizada esta imagem.

Bill Safadi: – A micrografia premiada é referente ao meu projeto PIBITI intitulado “Desenvolvimento de estruturas metal orgânicas (MOF) para aplicação em captura e armazenamento de hidrogênio e dióxido de carbono’, realizado no período de 01/08/2014 a 31/07/2015. No entanto, já trabalho na síntese de materiais porosos desde o meu primeiro ano de graduação no Laboratório de Química de Materiais e Sensores (LMSEN) da UEM. Juntamente com os demais membros do grupo, buscamos realizar um estudo sistemático do processo de síntese de MOFs que por sua vez são obtidas a partir de diferentes metais, diferentes métodos e diferentes fontes. Além disso, o desenvolvimento de novas MOFs com a utilização de ligantes orgânicos específicos. Como é uma área com elevado potencial de aplicação, o grupo também conta com uma relevante colaboração com renomados pesquisadores estrangeiros, para o desenvolvimento de projetos em parceria. No que tange ao financiamento, o projeto é financiado pela Fundação Araucária/PR (Processo: 830/2013).

Boletim Engenharia de Superfícies: – Gostaria de agradecer alguém que tenha participado da realização da imagem vencedora?

Bill Safadi: – Gostaria de agradecer principalmente o meu orientador Prof. Dr. Andrelson Wellington Rinaldi – DQI/UEM, pelo auxílio e suporte em todas as etapas do projeto, o doutorando Cleiser Thiago Pereira da Silva – PQU/UEM e o professor Dr. Murilo Pereira Moisés – UTFPR/Campus Apucarana, que me auxiliaram em todas as atividades do laboratório, assim como nas análises de dados. Também agradeço os demais colegas do grupo de pesquisa que são meus colaboradores e que muito me ajudaram durante a execução deste projeto, uma vez que este trabalho não é fruto de um esforço individual, e sim um trabalho de um grupo. Agradeço também ao CNPq pela minha bolsa de Iniciação Científica Tecnológica, a Fundação Araucária/PR pelo suporte financeiro, ao COMCAP da UEM e ao Instituto Nacional de Engenharia de Superfícies pela oportunidade de concorrer com nossa imagem.

Grupo do LMSEN - UEM

Grupo do LMSEN – UEM

Para entrar em contanto com Bill: billsafadi@gmail.com


Participação da academia e indústria brasileira no “Leeds-Lyon Symposium on Tribology” de 2015.

06/11/2015

por Tiago Cousseau

O Simpósio e a representatividade Brasileira:

Tribologia é a ciencia que estuda atrito, desgaste e lubrificação. Um dos congressos mais tradicionais e respeitados na area é o “Leeds-Lyon Symposium on Tribology“, que teve sua 42ª edição em 07 a 09 de Setembro de 2015. O simpósio este ano teve como tema chave: Surfaces and interfaces mysteries across the interface. Em decorrência, debateu-se em detalhe a interação entre superfícies (óxidos, terceiro corpo, etc.) e lubrificantes (em especial, os aditivos). O 42 Leeds-Lyon contou com a presença de mais de 300 pesquisadores provenientes dos quatro cantos do mundo.

leeds simposium 1

O Brasil teve uma participação ativa por meio de 3 trabalhos do Laboratório de Fenômenos de Superfície (LFS), Escola Politecnica – USP (sendo um em parceria com a Universidade Sueca de Halmstad), 2 trabalhos da Universidade Federal do Rio Grande do Norte e a coordenação de uma sessão de apresentações (LFS/USP). Dada a importancia do simpósio, o LFS / USP tem tido uma presença constante no mesmo, em especial com trabalhos gerados pelo consórcio de P&D automotivo “Desafios Tribologicos de Motores Flex- Fuel” (projeto FAPESP Nº 2009/54891-8). Vide tabela 1 e 2.

Tabela 1 – Trabalhos desenvolvidos e apresentados no 42º Leeds-Lyon Symposium por autores Brasileiros (2015).

  • T. Cousseau; J.S.R Acero; A. Sinatora – USP. Tribological response of fresh and used engine oils: the effect of surface texturing, roughness and fuel type
  • Z. Dimkovski (Halmstad University), E. Tomanik, F. Profito – USP. Influence of surface waviness on predictions of friction between cylinder liner and oil control ring
  • A. Rodrigues; T. Yonami-me; E. Albertin; A. Sinatora – USP. Pin on disc tribotests with addition of Cu particles as an interfacial media: characterization of disc tribosurface using SEM-FIB techniques
  • S. Alves; V. Mello; E. Faria; A.P. Camarog- UFRN. Nanolubricants developed from tiny CuO nanoparticles
  • J.O. Junior; A. Medeiros; A. Farias- UFRN. Characterization of the dynamic behaviour of lubricity fuels using vibration signals and multiresolution analysis

Tabela 2 – Trabalhos desenvolvidos e apresentados no 40º e 41º Leeds-Lyon Symposium pelo LFS/USP

  • F. Profito,D. Zachariadis, E.Tomanik. Deterministic modelling of the lubrication regime on piston ring–cylinder liner contact (2014)
  • E.M. Bortoleto; R.M. Souza; M.G.V. Cuppari. Atomistic simulation on the sliding of a rigid indenter over aluminum with crystalline defects (2013)
  • E. Tomanik, F. Profito, D. Zachariadis. Modelling of the Hydrodynamic Support of Laser Surface Texturing on Cylinder Bore and Piston rings (2011)

Brasil e os centros de excelência em Tribologia:

Durante os 3 dias de intensa troca de conhecimento com pesquisadores de todo o mundo duas situações ficaram claras: i) os temas chave estudados pelo LFS/USP são os mesmos das escolas de tribologia mais antigas e renomadas da Europa; ii) e o “gap” de conhecimento em tribologia entre Brasil e Europa é cada vez menor. Atualmente o Laboratório de Fenômenos de Superfície da USP é um dos centros de investigação que está na liderança da pesquisa sobre o impacto dos biocombustíveis, em particular do etanol, nos sistemas lubrificados dos motores de combustão interna, apesar do interesse internacional crescente no tema. Isto decorre, principalmente: i) dos incentivos dos órgãos de fomento para a pesquisa em biocombustíveis a exemplo do Projeto “Desafios Tribológicos em Motores Flex-Fuel” financiado pela FAPESP em colaboração com a VW, RENAULT, FIAT, MAHLE, TUPY, PETROBRAS, Unicamp, UFABC e USP, coordenado pelo Prof. Dr. Amilton Sinatora da USP; ii) e das demandas crescentes na redução de emissões de poluentes, que impulsionam às empresas a desenvolverem tecnologias para atingir as metas estabelecidas.

Resumo dos trabalhos apresentados pelo LFS da USP:

Cousseau, T, Ruiz, S. J., Sinatora, A. Tribological response of fresh and used engine oils: the effect of surface texturing, roughness and fuel type.

Superfícies anisotrópicas lisas e rugosas foram testadas em ensaios de movimento alternado com lubrificantes comerciais novos e usados em dinamômetro abastecidos por etanol e por gasolina em condições controladas. Verificou-se que tanto o sentido de deslizamento ( ou //) quanto o grau de envelhecimento do lubrificante afetam significativamente a eficiência do sistema uma vez que estes fatores estão diretamente relacionados com o funcionamento dos aditivos lubrificantes. O efeito da textura dá-se pela maior ou menor facilidade de remoção de óxido das superfícies durante o contato, que é considerado um requerimento para o funcionamento dos aditivos redutores de atrito; já o efeito de uso do óleo foi atribuído a degradação térmica do aditivo modificador do atrito e da interação do mesmo com o combustível brasileiro, o qual inibe o efeito de redução de atrito. Estes resultados estão resumidos na Figura 3, a qual mostra que apenas o lubrificante novo quando o ensaio foi realizado com deslizamento no sentido perpendicular às linhas de retificação mostrou redução de atrito (5W30).

leeds symposium 2

Figura 3 – Coeficiente de atrito em função do tempo medido no sentido paralelo e perpendicular às linhas de retificação.

Dimkovski Z., Profito F., Tomanik E. Influence of surface waviness on predictions of friction between cylinder liner and oil control ring.

Os efeitos de forma, ondulação e asperezas de cilindros de motor de combustão interna foram analisados quando em contato com o anel de terceiro canalete (anel de controle de óleo) utilizando uma análise multi-escala. Esta análise mostrou que as condições de contato alteram-se significativamente devido à utilização de filtros, prática atual comum. Estes filtros geram uma distribuição mais uniforme de asperezas (ver Fig. 4),de modo que o atrito (Friction Mean Effective Pressure – FMEP) gerado no regime limítrofe de lubrificação diminui e a parte hidrodinâmica aumenta para uma dada velocidade, podendo gerar interpretações errada dos resultados.

Figura 4 - Contato de asperezas da superfície de um cilindro de um motor após 320h de rodagem (área escura). Distribuição depende do filtro utilizado. Da esquerda para direita: Superfície sem filtragem, superfícies filtrada utilizando filtro Gaussiano robusto com 2,5mm, 0,8mm e 0,25mm.

Figura 4 – Contato de asperezas da superfície de um cilindro de um motor após 320h de rodagem (área escura). Distribuição depende do filtro utilizado. Da esquerda para direita: Superfície sem filtragem, superfícies filtrada utilizando filtro Gaussiano robusto com 2,5mm, 0,8mm e 0,25mm.

A.C.P. Rodriguesa*, T. Yonamineb, E. Albertinb A. Sinatorac, C.R.F. Azevedoa. Pin on disc tribotests with the addition of cu particles as an interfacial media: characterization of disc tribosurfaces using sem-fib techniques.

O efeito da adição de cobre como meio interfacial (400 μm, 20 μm and 50 nm) na microestrutura e topografia da tribosuperfície de discos após ensaios pino contra disco (aço/aço) foi evidenciada pela comparação com a condição sem adição de meio interfacial. Microscopia eletrônica de varredura (MEV), feixe de íons focalizado (FIB) e mapeamento de raios X (XEDS) foram as técnicas utilizadas para caracterizar a composição química, microestrutura, tribofilme e camadas deformadas plasticamente na superfície dos discos. A caracterização topográfica mostrou a presença de terceiro corpo e plateaus com marcas de desgaste, e, para algumas condições, a formação de uma camada de transferência de óxido. Observou-se com o mapeamento de raios X a presença de oxigênio associado ao ferro para todas as condições. Adicionalmente, foi observada a adesão expressiva de partículas de cobre nas tribos-superfícies das condições 20 μm e 50 nm. As seções transversais em FIB revelaram a heterogeneidade da superfície, mostrando a formação de camadas transformadas tribologicamente (STT); trincas sub-superficiais; destacamento de regiões plasticamente deformadas e a formação de debris. A formação de uma camada oxidada, compacta e contínua foi apenas observada nas condições sem adição de meio interfacial e com adição de cobre a 400μm.


Imagens vencedoras do concurso “Superfícies em imagens”.

02/07/2015

Vejam no final deste post as imagens vencedoras do concurso “Superfícies em imagens”, promovido pelo Instituto Nacional de Engenharia de Superfícies com apoio do CNPq, como iniciativa de divulgação da ciência e engenharia de superfícies por meio de imagens.

Estas 12 imagens foram selecionadas entre 67 inscritas, enviadas por autores de diversas instituições e empresas de 10 estados do Brasil (DF, ES, MG, PA, PE, PR, RN, RS, SC e SP). As imagens inscritas foram avaliadas nos quesitos de impacto visual, contribuição à divulgação de C&T e originalidade, conforme  estabelecia o regulamento do concurso.

A comissão julgadora do concurso destacou o alto nível das imagens inscritas nesta edição do prêmio.

O Instituto Nacional de Engenharia de Superfícies, INCT do CNPq, enquanto organizador do concurso, agradece a participação de todos e parabeniza especialmente os autores das imagens vencedoras! Os vencedores serão contatados por e-mail na próxima semana a respeito da entrega dos prêmios e certificados.

Imagens vencedoras

bill safadi_1

Fotomicrografia de MOF obtido via microondas. Crédito: Bill Nishar Safadi, estudante da UEM/LMSE (PR).

 

anderson de jesus_2

TEM de nanobastões de ouro crescidos sobre nanotubos de carbono. Crédito: Anderson Caires de Jesus, estudante da UFMG (MG).

MEV de nanofolhas de Cu(OH)2 crescido sobre lâmina de cobre. Crédito: Natália Goedtel Medeiros, estudante da UFRGS (RS).

MEV de nanofolhas de Cu(OH)2 crescido sobre lâmina de cobre. Crédito: Natália Goedtel Medeiros, estudante da UFRGS (RS).

Nanopartículas core-shell seguindo as linhas de campo. Crédito: Helena Augusta Lisboa de Oliveira, estudante da UnB (DF).

Nanopartículas core-shell seguindo as linhas de campo. Crédito: Helena Augusta Lisboa de Oliveira, estudante da UnB (DF).

Rede de Coordenação com íons de európio. Crédito: Dyego Maia de Oliviera, técnico terceirizado do CETENE/PE (PE).

Rede de Coordenação com íons de európio. Crédito: Dyego Maia de Oliviera, técnico terceirizado do CETENE/PE (PE).

Imagem de SEM de silício texturizado com nanopartículas de Ag. Crédito: Douglas Soares da Silva, estudante da UNICAMP (SP).

Imagem de SEM de silício texturizado com nanopartículas de Ag. Crédito: Douglas Soares da Silva, estudante da UNICAMP (SP).

MEV de aço AISI 316L nanoestruturado por bombardeamento iônico. Crédito: Silvia Azevedo dos Santos Cucatti, estudante da UNICAMP (SP).

MEV de aço AISI 316L nanoestruturado por bombardeamento iônico. Crédito: Silvia Azevedo dos Santos Cucatti, estudante da UNICAMP (SP).

TEM de nanopartículas de ouro em grade de cobre e carbono. Crédito: Rayssa Helena Arruda Pereira, estudante da UFES (ES).

TEM de nanopartículas de ouro em grade de cobre e carbono. Crédito: Rayssa Helena Arruda Pereira, estudante da UFES (ES).

Fractografia de cerâmica vermelha com incorporação de granito. Crédito: Israel Krindges, engenheiro químico da UCS (RS).

Fractografia (3D) de cerâmica vermelha com incorporação de granito. Crédito: Israel Krindges, engenheiro químico da UCS (RS).

MEV de cristais de ZnO em formato de nanofolhas. Crédito: Daniel Lorscheitter Baptista, professor da UFRGS (RS).

MEV de cristais de ZnO em formato de nanofolhas. Crédito: Daniel Lorscheitter Baptista, professor da UFRGS (RS).

Microestruturas de polipirrol eletrodepositado sobre aço inox. Crédito: Stéfano Rahmeier Marquetto, estudante da UFRGS (RS).

Microestruturas de polipirrol eletrodepositado sobre aço inox. Crédito: Stéfano Rahmeier Marquetto, estudante da UFRGS (RS).

Fractografia do aço maraging nitretado por plasma- vista lateral. Crédito: Adriano Gonçalves dos Reis, estudante do ITA (SP).

Fractografia do aço maraging nitretado por plasma- vista lateral. Crédito: Adriano Gonçalves dos Reis, estudante do ITA (SP).